Exponential Sums and Congruences with Factorials

نویسندگان

  • Moubariz Z. Garaev
  • Florian Luca
  • Igor E. Shparlinski
چکیده

We estimate the number of solutions of certain diagonal congruences involving factorials. We use these results to bound exponential sums with products of two factorials n!m! and also derive asymptotic formulas for the number of solutions of various congruences with factorials. For example, we prove that the products of two factorials n!m! with max{n,m} < p1/2+ε are uniformly distributed modulo p, and that any residue class modulo p is representable in the form m!n! + n1! + . . . + n49! with max{m,n, n1, . . . , n49} < p 8775/8794+ε.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bernoulli numbers and generalized factorial sums

We prove a pair of identities expressing Bernoulli numbers and Bernoulli numbers of the second kind as sums of generalized falling factorials. These are derived from an expression for the Mahler coefficients of degenerate Bernoulli numbers. As corollaries several unusual identities and congruences are derived.

متن کامل

CHARACTER SUMS AND CONGRUENCES WITH n!

We estimate character sums with n!, on average, and individually. These bounds are used to derive new results about various congruences modulo a prime p and obtain new information about the spacings between quadratic nonresidues modulo p. In particular, we show that there exists a positive integer n ≪ p1/2+ε, such that n! is a primitive root modulo p. We also show that every nonzero congruence ...

متن کامل

Local Zeta Functions Supported on Analytic Submanifolds and Newton Polyhedra

The local zeta functions (also called Igusa’s zeta functions) over p-adic fields are connected with the number of solutions of congruences and exponential sums mod pm. These zeta functions are defined as integrals over open and compact subsets with respect to the Haar measure. In this paper, we introduce new integrals defined over submanifolds, or more generally, over non-degenerate complete in...

متن کامل

Congruences for degenerate number sequences

The degenerate Stirling numbers and degenerate Eulerian polynomials are intimately connected to the arithmetic of generalized factorials. In this article we show that these numbers and similar sequences may in fact be expressed as p-adic integrals of generalized factorials. As an application of this identiication we deduce systems of congruences which are analogues and generalizations of the Ku...

متن کامل

Congruences and exponential sums with the sum of aliquot divisors function

We give bounds on the number of integers 1 6 n 6 N such that p | s(n), where p is a prime and s(n) is the sum of aliquot divisors function given by s(n) = σ(n) − n, where σ(n) is the sum of divisors function. Using this result we obtain nontrivial bounds in certain ranges for rational exponential sums of the form Sp(a,N) = ∑ n6N exp(2πias(n)/p), gcd(a, p) = 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008